
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 1

URBER: Ultrafast Rule-Based Escape Routing
Method for Large-Scale Sample Delivery Biochips

Jiayi Weng Tsung-Yi Ho Weiqing Ji Peng Liu Mengdi Bao Hailong Yao

Abstract—In high-throughput drug screening applications, as
manual drug sample delivery is time-consuming and error-prone,
there is an urgent need for accurate and efficient drug sample
delivery biochip for large-scale microwell arrays. This paper
proposes a new microfluidic biochip architecture, where drugs
are automatically prepared with different concentration values,
and then delivered into multiple microwells. For large-scale drug
sample delivery biochips, the routing of drug sample delivery
channels is a very challenging task without effective routing
solutions. This paper proposes an ultrafast rule-based escape
routing method, called URBER, to address the large-scale routing
of drug sample delivery channels, which scales well in both
runtime and memory even for a very large problem size. URBER
runs very fast because it routes channels based on a set of
pre-defined rules, which avoids runtime consumed in solution
space exploration. All benchmarks for 30≤N,M≤ 100 have been
tested, where N and M are the number of columns and rows of
the terminal array. Among these benchmarks, about ∼91.9%
are routed with optimal solutions, and the runtime is order
of magnitudes faster than optimal min-cost flow-based methods
(speedup is from ∼600 to ∼340k). Specifically, for all benchmarks
with M

N ∈ (3
4 ,

4
3), optimal routing solutions are always obtained.

URBER also shows promise of routing large-scale designs with
up to 500k terminals efficiently.

Index Terms—Microfluidic biochips, Drug delivery, Sample
delivery, Rule-based routing, Microwell array, Escape routing

I. INTRODUCTION
In various biochemical applications, different samples/drugs

of different concentration values need to be delivered into
different microwells, such as single-cell genome sequencing
[1], cell culture [2], cell analysis [3], drug screening [4],
etc. Current methods for delivering multiple drugs include
manual pipetting apparatus and automated pipetting robot. On
one hand, the process of manual pipetting is time-consuming,
laborious, and error-prone. On the other hand, the automated

The work of H. Yao was supported in part by the National Natural Science
Foundation of China (61674093). The work of T.-Y. Ho was supported in
part by the Ministry of Science and Technology of Taiwan, under Grant
MOST 105-2221-E-007-118-MY3 and 104-2220-E-007-021 and in part by
the Technical University of Munich-Institute for Advanced Study, funded by
the German Excellence Initiative and the European Union Seventh Framework
Program under grant agreement no 291763.

Jiayi Weng, Weiqing Ji, Mengdi Bao, and Hailong Yao are with the
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China.

Tsung-Yi Ho is with the Department of Computer Science, National Tsing
Hua University.

Peng Liu is with the Department of Biomedical Engineering, School of
Medicine, Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, Tsinghua University, Beijing 100084, China.

Corresponding author: Hailong Yao, E-mail: hailongyao@tsinghua.edu.cn.
Copyright c© 2018 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

pipetting robot is only suitable for volume production and
is too expensive for researchers in laboratories. In contrast,
automated drug sample delivery by microfluidic biochips
enjoys notable advantages: (1) drug sample delivery biochips
can be easily integrated into automatic point-of-care analyzers,
(2) automatic sample preparation module can be integrated
to deliver samples with different concentration values, and
(3) different samples/reagents can be simultaneously delivered
into different microwells without human intervention. There-
fore, drug sample delivery microfluidic biochips are promising
in enhancing the portability, accuracy, and automation of
microwell-based biochemical applications.

In the past decade, different design automation methods
have been presented for flow-based microfluidic biochips,
including architectural synthesis and resource binding methods
[5]–[9], flow-layer placement and routing methods [10]–
[12], control optimization methods [13]–[20], co-design of
both control and flow layers [21]–[25], storage optimization
methods [26], [27], fault modeling and testing methods [28]–
[31], random design methods [32], [33], etc.

However, none of the existing works on microfluidic
biochips can be used to handle the large-scale drug sample
delivery channel routing problem.

Although drug-delivery routing problem looks similar to
the routing problem for printed circuit boards (PCBs), there
are critical differences. Existing PCB routing methods address
different routing problems with complex constraints, such
as stagger-array design, differential-pair constraint, missing-
pin design, and multilayer boards [34]–[36]. Although these
methods can be modified to solve a drug sample delivery
problem, either efficiency or optimality is not satisfactory. This
is because existing methods are either based on integer linear
programming (ILP) [37], which runs slow, or based on network
flow formulation, which is sub-optimal due to the post-routing
process [38]. We find out that due to the special characteristics
of drug sample delivery problem, a much faster routing method
is required.

In this paper, we propose an ultrafast rule-based escape
routing method, called URBER, to address the scalability chal-
lenge in designing large-scale drug sample delivery biochip.
Major contributions are as follows:
• The large-scale drug sample delivery biochip architecture

is described, and the challenging large-scale escape rout-
ing problem is identified and effectively solved.

• The first ultrafast rule-based escape routing method is
proposed, which conducts routing based on a set of
prespecified rules, and thus significantly reduces runtime
and enhances scalability to large-scale designs.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 2

(a) (b)

(c)

Fig. 1. (a) Concentration gradient generator [39], (b) a 96-well plate, and
(c) close look at a microwell array [3].

• URBER is not only orders of magnitude faster than
optimal min-cost flow-based routing method, but also
obtains optimal routing solutions in ∼91.9% cases among
more than 5,000 benchmarks obtained by sweeping the
benchmark sizes.

The remainder of this paper is organized as follows.
Section II describes the proposed biochip architecture along
with problem formulation. Section III presents the rule-based
regular routing method. Section IV presents and discusses ex-
perimental results. Finally, a conclusion is drawn in Section V.

II. BIOCHIP ARCHITECTURE AND PROBLEM
FORMULATION

A. Biochip Architecture

Figure 1 shows examples of concentration gradient genera-
tor (Figure 1(a)) and w-well plate (Figure 1(b)). In proposed
drug sample delivery biochip architecture, w different types
of drugs are loaded from the w-well plate, and then different
concentration values for each input drug are obtained by
concentration gradient generator. For each concentration value,
multiple copies of fluids are obtained and then delivered to
the microwells (Figure 1(c)). For the concentration gradient
generator shown in Figure 1(a), individual drugs are intro-
duced into the middle inlet and water into two outer inlets.
The gradient concentrations are generated based on repeated
mixing, splitting, and recombination of laminar-flow fluids
using a serpentine network of microfluidic channels [40].

Figure 2 shows a schematic diagram of proposed microflu-
idic biochip design. w drugs preserved in a w-well plate
(Figure 1(b)) are dispensed into w concentration gradient
generators for diluting each drug into v concentrations, and

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

Different
drugs in

m-well plate

Concentration gradient generator Different copies in microwells

Fig. 2. Large-scale drug sample delivery microfluidic biochip design: w
drugs in w-well plate are dispensed into w concentration gradient generators
for diluting each drug into v concentrations, and then each concentration is
copied k times for drug screening.

then each concentration is copied k times. Finally, different
copies are delivered into microwell array for drug screening
applications. This biochip architecture requires only a single
polydimethylsiloxane (PDMS) layer to finish complex sample
dilution and delivery tasks.
B. Problem Formulation

As shown in Figure 2, a large number of different drug
copies are required to be routed to specified microwell posi-
tions. For example, for a target microfluidic biochip design
with 384-well plate, assuming the number of concentration
values for each drug is v = 5, and the number of copies
for each drug sample is k = 10. Then there are in total
384×5×10 = 19200 microwells to be routed simultaneously.
Existing escape routing methods never addressed such large
routing problems [38], [41], [42]. Moreover, to enable high-
throughput drug screening, even larger designs are required,
which bring great challenges to automatic design methods. In
this paper, we propose the ultrafast rule-based escape routing
method, which can obtain high-quality design solution for
above design problem within few seconds.

The multiple drug sample delivery problem can be stated
as follows:
Given: w drugs from the w-well plate, w gradient concentra-
tion generators, and high-throughput microwell array.
Find: The escape routing solution for drug sample delivery
microfluidic biochip, which simultaneously delivers diluted
drug samples from external terminals (outputs of gradient
concentration generators) to internal terminals (microwells).
Constraints: (1) Each internal terminal of the biochip is
aligned to a microwell; (2) Each external terminal is connected
to an output port of the gradient concentration generator; (3)
Design rules such as minimum spacing and channel width are
satisfied.
Objective: Minimize total channel length.

III. ULTRAFAST RULE-BASED ESCAPE ROUTING METHOD

Definition 1 (Routing Region): The routing region is de-
fined as the rectangular routing area enclosing internal nodes,
which are connected to the concentration gradient generator.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 3

TABLE I
NOTATIONS USED IN THE PROPOSED METHOD.

S Internal terminal
T External terminal

N/M
Number of internal terminals in horizontal/vertical
direction

S[n,m] The internal terminal at nth column and mth row

d
Number of routing pitches between adjacent internal
terminals

d0 Minimum feasible value of d for successful routing
gx/gy Total horizontal/vertical routing grids in routing region

Ri Routing subregion i
|Ri| Number of internal terminals in subregion i
B Boundary line of the routing region

DM /−DM Main direction/the opposite direction of DM

DA/−DA Auxiliary direction/the opposite direction of DA

nx/ny
Maximum column/row number of unrouted internal
terminals in R0

Tx(tx,0)/
Ty(0, ty)

Candidate external terminals in lower/upper triangular
region as defined in Definition 13

Sx/Sy Candidate internal terminal in lower/upper triangular region
cx/cy Candidate routing channel in lower/upper triangular region

Definition 2 (Internal Terminal): An internal terminal is
defined as the internal node corresponding to microwell for
drug sample delivery.

Definition 3 (External Terminal): An external terminal is
defined as the terminal at the boundary of the routing region
interconnecting internal terminal and concentration gradient
generator.

Definition 4 (Routing Pitch): The routing pitch is defined
as the distance between centerlines of adjacent routing chan-
nels, which observes the minimum channel width and spacing
constraints.

Definition 5 (Routing Grid): A routing grid is the intersec-
tion point between horizontal and vertical lines partitioned
according to given routing pitch.

Definition 6 (Routing Channel): A routing channel is de-
fined as a sequence of routing grids from an internal terminal
to an external terminal.

Definition 7 (Axis): An axis (x-axis/y-axis) is built upon
given routing region.

Figure 3 gives a routing example from the rule-based routing
method within a rectangular routing region. In this figure, the
internal terminal, external terminal, routing grid, and routed
channel along routing grids are marked. The external terminals
are on the boundary lines of the routing region. Axes are built
as shown in the figure. Number of horizontal internal terminals
N = 6, number of vertical internal terminals M = 4, number of
routing pitches between internal terminals d = 2, the minimum
feasible value of d for successful routing d0 = 2, and the total
number of routing grids (gx×gy) = (14×10). Table I shows
the notations used in our proposed method.

Definition 8 (Central Axis): The central h-axis and central
v-axis are defined along center lines of entire routing region.
For total gx/gy routing grids along horizontal/vertical direction,
the central v-axis/h-axis is at x = gx/2 / y = gy/2.

Definition 9 (Routing Subregion): The routing subregion is
defined as the partial routing area of the original routing
region after partitioning by the divide-and-conquer approach.

x

y

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10

Routing Grid External Terminal

Boundary
Line

Internal Terminal

Routing
Channel

d = d0 = 2

Fig. 3. A routing example.

O
x

y

gx

gy

R0 R1

R2 R3

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

Central
h-axis

Central
v-axis

(a)

O
x

y

gx

gy

Upper Triangular Region

Lower Triangular Region

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

(b)

Fig. 4. Partitioning of routing region: (a) routing subregions with central
h-axis and central v-axis, and (b) upper and lower triangular regions within
one routing subregion R0.

For each internal terminal Si, it can be connected to external
terminal Tj only if Si and Tj belong to the same subregion Rk.

Definition 10 (Upper/Lower Triangular Region): During
routing in a subregion, each internal terminal is assigned
to either lower or upper triangular region by the routing
method, resulting in partitioning of two triangular regions. An
internal terminal assigned to the upper/lower triangular region
must be routed to an external terminal along corresponding
y-axis/x-axis boundary line.

Figure 4 gives an example of partitioning entire routing
region. As shown in Figure 4(a), the routing region is par-
titioned into 4 routing subregions, i.e., R0, R1, R2, and R3.
In following sections, subregion R0 consisting of routing grid
(0,0) is used for describing the proposed routing method.
Here, gx and gy give the total number of routing grids along
x and y direction, respectively. As shown in Figure 4(b), one
routing subregion can be further partitioned into upper and
lower triangular regions by applying proposed routing rules.
As denoted by arrowed lines, internal terminals of different
triangular regions can only be routed to their corresponding
external terminals along y-axis/x-axis boundary lines.

A. Routing Flow

Figure 5 shows the overall flow of URBER. Given the
number of internal terminals (N,M) and the number of routing
pitches between adjacent internal terminals d, we first calculate
total length gx and total width gy computed by Equation (1)
(see Section III-B), corresponding to total number of routing
grids in horizontal and vertical directions, respectively. Then
the entire routing region is partitioned into 4 subregions by
proposed terminal assignment rule as described in Section
III-C. Next, the proposed routing rule Rule-Central is applied
to route central-state internal terminals in all subregions as
described in Section III-F1. When central-state terminals are

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 4

Number of internal terminals
(N,M) and routing pitches d

Calculate total length gx and total
width gy of the routing region

Partition routing region into 4
subregions R0, R1, R2, and R3
by terminal assignment rule

Apply Rule-Central to
connect central-state internal
terminals in all subregions

Apply Rule-General to
connect general-state internal
terminals in each subregion

All subregions
routed successfully?

Output routing solution

Recalculate d

Yes

No

Fig. 5. Proposed routing flow of URBER.

routed, the proposed routing rule Rule-General in Section
III-F2 is applied to route remaining internal terminals in each
subregion. If there are routing failures, this routing process will
be iterated with an increased value of d. Section III-I describes
how to efficiently determine the feasible value of d. When all
internal terminals are successfully routed, the routing channels
will be output as the final solution. Section III-J presents the
time complexity analysis.

B. Computation of Routing Grids

First, the number of internal terminals in horizontal and
vertical directions, N and M, are loaded into the routing
system, respectively. Given the number of routing pitches
between adjacent internal terminals d, the total number of
routing grids in horizontal/vertical direction gx/gy can be
computed as

gx = (N +1)×d

gy = (M+1)×d
(1)

For an internal terminal at the nth column and mth row,
denoted as S[n,m], its corresponding mapped coordinates (x,y)
in partitioned routing grids are computed as

x = n×d

y = m×d
(2)

C. Partitioning of the Routing Region

We propose a divide-and-conquer approach to speed up the
routing process, which partitions complete routing region into
different subregions. As subregions are similar to each other
with respect to central v-axis and central h-axis, the symmetric
property is utilized for routing speedup. So not all subregions
need to be directly routed, and some of them can be resolved
by coordinate transformation.

As shown in Figure 4(a), the entire rectangular routing
region is divided into 4 rectangular subregions along central v-
axis and central h-axis, respectively. Since routing subregions
are similar to each other, we initially route internal terminals
in R0. And then by flipping routing solution around central
h-axis and central v-axis, similar routing solutions in other
routing subregions may be obtained, which avoids redundant
computation of similar routing channels.

Given the number of internal terminals in horizontal and
vertical directions, N and M, respectively, the routing subre-
gion of ith internal terminal Si[ni,mi] at [ni,mi] can be obtained
by following terminal assignment rule:

1) ni < (N +1)/2, mi < (M+1)/2: Si ∈ R0.
2) ni > (N +1)/2, mi < (M+1)/2: Si ∈ R1.
3) ni < (N +1)/2, mi > (M+1)/2: Si ∈ R2.
4) ni > (N +1)/2, mi > (M+1)/2: Si ∈ R3.
5) ni = (N + 1)/2, mi < (M + 1)/2: if mi mod 2 = 1, Si ∈

R0; otherwise Si ∈ R1.
6) ni = (N+1)/2, mi > (M+1)/2: if (M−mi) mod 2 = 1,

Si ∈ R2; otherwise Si ∈ R3.
7) ni < (N+1)/2, mi = (M+1)/2: if ni mod 2= 1, Si ∈R2;

otherwise Si ∈ R0.
8) ni > (N +1)/2, mi = (M+1)/2: if (N−ni) mod 2 = 1,

Si ∈ R3; otherwise Si ∈ R1.
9) ni = (N+1)/2, mi = (M+1)/2: if (N ≥M∧M mod 4=

1)∨(N < M∧N mod 4 = 3), Si ∈ R0; otherwise Si ∈ R1.
Figure 6 shows an example of applying above terminal

assignment rule to internal terminals for N = 7 and M = 5.
After applying terminal assignment rule, four routing subre-
gions are formed by partitioned internal terminals. There are
in total 7×5 = 35 internal terminals. Specifically, the number
of internal terminals in each subregion is as follows: |R0|= 9,
|R1| = 9, |R2| = 9, |R3| = 8. As shown in the figure, R1 and
R2 are symmetrical. So we only need to route one subregion
(either R1 or R2), and then flip routing solution to another
subregion by coordinate transformation. For different values of
N and M, different pairs of subregions are symmetrical. From
the figure, the shape of partitioned subregions are not exactly a
rectangle, but a rectangular shape with zigzag boundary edges.

Lemma 1: When applying terminal assignment rule, all
internal terminals are assigned to a single subregion. Let |Ri|
denote the number of internal terminals in subregion Ri. Then,
∀i, j ∈ {0,1,2,3},

∣∣|Ri|− |R j|
∣∣≤ 1.

Lemma 2: When applying terminal assignment rule, the
following conditions hold: (1) when N and M are both odd
numbers, there is only one pair of subregions with identical
number of internal terminals, either |R0|= |R3| or |R1|= |R2|;
(2) when N or M is even number, there are two pairs of
subregions with identical number of internal terminals (|R0|=
|R3| and |R1|= |R2|).

Lemma 3: When applying terminal assignment rule, if
|Ri|= |R3−i|, subregions Ri and R3−i are symmetrical to each
other, and the optimal routing solution of one subregion can be
transformed to another subregion without loss in optimality.

D. Different Routing States
During the routing process, different internal terminals are

not only assigned to different subregions, but also assigned to

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 5

n

m

O 1

0
0
2
2
2

2

0
0
0
2
2

3

0
0
2
2
2

4

0
1
0
2
3

5

1
1
1
3
3

6

1
1
3
3
3

7

1
1
1
3
3

1
2
3
4
5

rule(1) rule(5) rule(2)

rule(7) rule(9) rule(8)

rule(3) rule(6) rule(4)

(a) (b)

Fig. 6. Partitioning of routing region with N = 7 and M = 5: (a) total 4
subregions obtained from 9 blocks, where the internal terminals marked by
number i (i∈ {0,1,2,3}) belongs to subregion Ri, and (b) the correspondance
between the 9 blocks and the 9 terminal assignment rules.

R0 R1

R2 R3 Central
State

General
State

Fig. 7. Different routing states and routing subregions.

B

S

T
DM

DA

(a)

B

S′

T

p −DM

−DA
?

(b)

Fig. 8. Example of rule-based routing following main and auxiliary
directions: (a) main and auxiliary directions, (b) when S′ and p are collinear,
p will be expanded along −DM .

different routing states according to their specific positions.
There are 2 routing states: central state and general state.

1) Central State: In the entire routing region, four set of
internal terminals near central axes are assigned to the central
state, whose corresponding external terminals are near the
centers of corresponding boundary lines. Whether an internal
terminal belongs to central state is determined by the routing
rule in Section III-F1.

2) General State: Apart from central-state internal termi-
nals, the remaining four set of internal terminals are assigned
to the general state. Figure 7 illustrates the assignment of
internal terminals to different routing states. In Figure 7,
routing channels for central-state internal terminals are shown
in black lines, and routing channels for general-state internal
terminals are in gray lines.

E. Basic Routing Rules

Given internal terminal S, external terminal T , and boundary
line B where T is located, we give the following definitions
for describing the proposed routing rules.

B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
I

II

S

T

B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
I

II

S

T
B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
I

II

S

T
(a) Routing from S to T

B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
S

T

(b) Routing from T to S

Fig. 9. Merits of routing from T to S. (a) Drawbacks of routing from S to
T : (I) Unnecessary detours occur with increased length; (II) Certain unrouted
internal terminals will be blocked. (b) Drawbacks in (a) are avoided by routing
from T to S.

Definition 11 (Main Direction): The main direction DM of
S is defined as the searching direction from S towards B. The
opposite direction of DM is denoted as −DM .

Definition 12 (Auxiliary Direction): The auxiliary direction
DA of S is defined as the searching direction from S towards
T , which is perpendicular to DM . The opposite direction of DA
is denoted as −DA. When S and T are collinear, DA = DM .

Figure 8(a) shows the main direction and auxiliary direction
from S to T , where T is to the bottom left of S. In this figure,
DM is going downward, and DA is going left.

1) Rule-1: The first routing rule, Rule-1, starts from ex-
ternal terminal T , and synthesizes a routing channel toward
internal terminal S′. Significant improvement of routing com-
pletion rate can be obtained by routing from external terminals
rather than from internal terminals. Figure 9 gives an example
illustrating the difference of this two cases. When routing
from T toward S′, for each routing grid, the direction of
−DA is first checked. If there is a routing obstacle, e.g., an
internal terminal or a pre-routed path, the direction of DM is
checked for routing. When an unrouted internal terminal S is
reached, a routed channel is obtained and the routing process
is terminated. Here, S may be different from S′. In this way,
it is guaranteed that a staircase-shaped channel can always be
obtained from T to certain unrouted internal terminal S.

Algorithm 1 presents the basic routing rule Rule-1. In
this algorithm, c denotes routing channel, p denotes current
routing grid, q denotes next routing grid in direction −DM , r
denotes next routing grid in direction −DA, and p−DM/p−DA
denotes next routing grid in direction −DM/−DA. In Line 3-12,
the while-loop determines routing grid of candidate internal
terminal by p, which is initially assigned as T . The routing
grid p is first expanded along −DA. During expansion, when
an obstacle is reached along −DA, the expanding direction
will be switched to −DM . When S′ and p are collinear,
p will be expanded along −DM (see Figure 8(b)). During
the expanding process, if there are routing obstacles along
both −DA and −DM , then the routing process fails (c←∅).
Otherwise, p will reach an unrouted internal terminal, and this
internal terminal will be marked as candidate internal terminal
S. Routing channel c is also obtained during this expanding
process. In URBER, all channels are routed by Rule-1, which
is mostly called in other routing procedures. As Rule-1 carries

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 6

Input: Internal terminal S′ and candidate external
terminal T

Output: Candidate internal terminal S and routed
channel c from S to T

1 Obtain DM and DA from S′ to T ;
2 p← T , c←{T};
3 while p is not an unrouted internal terminal do
4 q← p−DM , r← p−DA;
5 if r is not occupied and Noncollinear(p,S′) then
6 p← r;
7 else if q is not occupied then
8 p← q;
9 else

10 S← p, c←∅;
11 return S,c

12 c← c∪{p};
13 S← p;
14 return S,c

Algorithm 1: Rule-1

out routing along only two alternating directions from T to S,
we have following lemma.

Lemma 4: For each routed channel ci from internal terminal
S j to external terminal Tk, Rule-1 guarantees the length of ci
to be equal to the Manhattan distance between S j and Tk.

2) Rule-2: The second routing rule, Rule-2, obtains routing
channels for a given number of internal terminals within one
column or row. These terminals are connected to nearest
boundary line B by Rule-1. According to column/row index of
the current internal terminal to be routed, different auxiliary
directions are adopted during routing. As index value changes,
the auxiliary direction switches back and force corresponding-
ly for enhanced routability.

Algorithm 2 presents details of routing rule Rule-2, where δ

denotes whether or not to switch routing direction (see Figure
10(a)), and tl/tr denotes the coordinate of candidate external
terminal nearby/away from origin (0,0) (see Figure 10(b)). In
Line 1, initial values of tl , tr are computed. In Line 3-19, the
while-loop computes routing channels by Rule-1 from S to Tl
or Tr, depending on the value of (i+ δ) mod 2. The routing
process is iterated until the number of routed internal terminals
is greater than lim or certain external terminal T (Tl or Tr) is
already occupied. Finally, the routing channels are returned.

Figure 10(b) shows a routing example based on Rule-
2. In the figure, channels in gray lines are intermediately
computed in the while-loop for the case of i < 5 (Line 3-
19 in Algorithm 2). For i = 5, if S and T are determined,
because there are no other unrouted internal terminals nearer
to T along DM and DA, the computed routing channel (denoted
in arrowed lines) will be connected to S.

F. Rule-Based Routing for Different States

1) Rule-Central: The routing rule for central state, Rule-
Central, connects central-state internal terminals using Rule-2
(see Section III-D1). Here, we only route two sets of internal
terminals: (1) those along the boundary between R0 and R1,
and (2) those along the boundary between R0 and R2. Then

Input: Column/Row f lag, unrouted internal terminal’s
column/row number n, upper bound on the
number of terminals to be routed lim, and
switching flag δ

Output: Routed channels for given internal terminals
1 tl ← n×d−δ, tr← tl +1;
2 i← 1;
3 while i≤ lim and ith internal terminal is unrouted do
4 if f lag=Column then
5 Tl ← (tl ,0),Tr← (tr,0),S← (n×d, i×d);
6 else
7 Tl ← (0, tl),Tr← (0, tr),S← (i×d,n×d);

8 if (i+δ) mod 2 = 1 then
9 if Tl is routed then

10 break;
11 else
12 c← Rule-1(S,Tl), tl ← tl−1;

13 else
14 if Tr is routed then
15 break;
16 else
17 c← Rule-1(S,Tr), tr← tr +1;

18 Store c as routing solution;
19 i← i+1;

20 return Routed channels
Algorithm 2: Rule-2

n

m

O

1

1

2

2

3

3

4

4

δ = 0 δ = 1

n

m

O

1

1

2

2

3

3

4

4

(a)

B
O

S′ = S

Tl Tr

lim
(=5)

(b)

Fig. 10. Routing example by Rule-2: (a) different routing solutions
corresponding to different switching flags δ = 0 and δ = 1, and (b) routing
solution from Rule-2.

coordinate transformation is performed to obtain the remaining
routing solution as follows: (1) for internal terminals between
R1 and R3, routing solution is obtained by transforming the
solution of internal terminals between R0 and R2, and (2)
for internal terminals between R2 and R3, routing solution
is obtained by transforming the solution of internal terminals
between R0 and R1. By coordinate transformation, the routing
solution in each subregion maintains symmetric. Algorithm 3
presents details of routing procedure, and Figure 11 presents
a routing example of applying Rule-Central.

In Algorithm 3, routing solution of central-state internal
terminals is obtained by analyzing the odevity of N and M
(see Line 3-7 and Line 8-12). If M is odd, there is only one
row closest to central h-axis. The maximum number of internal
terminals along this row, which can be successfully routed, is
set to 2d− 1. As shown in Figure 11, as M = 9 (odd) and
d = 4, there are maximum 7 (2×4−1) internal terminals that
can be successfully routed along row 5 ((M + 1)/2 as given

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 7

Input: N, M, d, gx and gy.
Output: Routed channels of central-state internal

terminals.
1 ln← bN/2c;
2 lm← bM/2c;
3 if N mod 2 = 1 then
4 Rule-2(Column, (N +1)/2, min{2d−1, lm}, δ=0);
5 else
6 Rule-2(Column, N/2, min{d, lm}, δ=0);
7 Rule-2(Column, N/2+1, lm, δ=1);

8 if M mod 2 = 1 then
9 Rule-2(Row, (M+1)/2, min{2d−1, ln}, δ=1);

10 else
11 Rule-2(Row, M/2+1, min{d, ln}, δ=1);
12 Rule-2(Row, M/2, ln, δ=0);

13 Perform centrosymmetric coordinate transformation by
Equation (3);

14 return Routed channels
Algorithm 3: Rule-Central

n

m

O

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

1 8 9 16

1

5

9

.

.

.. ..

.....

≤ 2d−1
(=7)

Gap

≤ ln(=bN/2c=8)

≤ d(=4)

≤ lm
=(bM/2c=4)

Centrosymmetric

Central v-axis

Central h-axis

Fig. 11. Routing example of applying Rule-Central when N is odd and M
is even: N = 16, M = 9, and d = d0 = 4. The gap is between the 8th and 9th

column.

in Line 9). When N is odd, Rule-2 is applied similarly.
When N is even, there are 2 columns closest to central

v-axis. We first route no more than d internal terminals on
the left-side column with routing channels to the left of
central v-axis, and corresponding external terminals are as
close to central v-axis as possible. Then we apply Rule-2 to
route internal terminals on the right-side column to unrouted
external terminals in the gap near central v-axis. As shown
in Figure 11, N = 16 is even and d = 4, so no more than 4
internal terminals to the left-side of central v-axis are routed.
Then Rule-2 is applied to route internal terminals along the
right column towards unrouted external terminals to the right
of central v-axis. The routing procedure continues until all
external terminals in the gap (as marked in the figure) are
routed. When M is even, Rule-2 is applied similarly.

Here, in Line 1-2, ln, lm is used to set the threshold on the
number of internal terminals in a column/row to be routed,
so that routing channels do not cross different subregions.
The aim of applying Rule-2 with different values (0/1) of
δ has two folds: (1) let external terminals closest to central
v-axis/h-axis be routed first, and (2) when N or M is odd,
terminal assignment rule is observed as stated in Section
III-C. As stated above, only two set of internal terminals are
routed: (1) those along the boundary between R0 and R1,

and (2) those along the boundary between R0 and R2. For
internal terminals along the boundary between R1 and R3, and
along the boundary between R0 and R2, their routing solutions
are obtained by transforming the coordinates (x,y) of routed
channels by the following equation:

x′ = gx− x

y′ = gy− y
(3)

where (x′,y′) is computed from (x,y). gx and gy are given in
Equation (1).

2) Rule-General in R0: The routing rule for general-state
internal terminals (see Section III-D2), Rule-General, connects
these internal terminals using both Rule-1 and Rule-2.

Definition 13 (Candidate External Terminal in R0): The
candidate external terminal in R0 is defined as external
terminal to be routed at current routing step in R0. There
are two candidate external terminals at each routing step
corresponding to the two triangular regions, denoted as
Tx(tx,0) and Ty(0, ty). Assuming t ′x / t ′y denotes the minimum
x / y coordinate of routed external terminal in lower/upper
triangular region. Then tx = t ′x−1 / ty = t ′y−1.

Figure 12 shows tx and ty for candidate external terminals
in an intermediate routing solution for R0. As shown in
the figure, when central-state internal terminals are routed,
for routing general-state internal terminals, we start at the
rightmost/topmost unoccupied external terminal and set it
as candidate external terminal. Since external terminals for
tx ∈ [16,28] / ty ∈ [15,22] are already occupied, the candidate
external terminal for tx = 15 / ty = 14 is obtained. The
candidate external terminals will be routed to certain unrouted
general-state internal terminals. In the figure, the black lines
denote routed channels for general-state internal terminals, and
the bold black lines denote routed channels for central-state
internal terminals.

Figure 12 shows an intermediate routing solution for
general-state internal terminals in R0, where N=13, M=12,
d=d0=4: the maximum column/row number of unrouted inter-
nal terminals in R0 nx=5 / ny=5, candidate external terminals
Tx(15,0) and Ty(0,14), candidate internal terminals in low-
er/upper triangular region Sx[4,2]/Sy[5,5], and candidate rout-
ing channels in lower/upper triangular region cx/cy (marked
in black dashed lines). The black lines denote routed channels
for general-state internal terminals, and the bold black lines
denote the routed channels for central-state internal terminals.

The intrinsic idea of Rule-General is to apply Rule-1 and
Rule-2 for routing from candidate external terminal Tj to an
unrouted internal terminal Si in general state. In subregion R0,
each internal terminal is only connected to external terminals
at the left half of x-axis or the bottom half of y-axis, i.e.,
each internal terminal is assigned to the lower/upper triangular
region. For each round of routing, two candidate routing
channels are obtained from Tx and Ty using Rule-1, which
connect two different internal terminals in different triangular
regions (see Figure 12). Then the shorter channel is first
stored as a routing solution. For the longer one, only when
certain conditions (cf. Line 22-29 in Algorithm 4 as explained
later) are satisfied will it be stored as a routing solution. The
merit of this routing method is that triangular regions are

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 8

x

y

O

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...

...

...

..

...

...

...

.

.............
...
...
...
.

..............

.

.

Ty(ty=14)

ny(=5)

Tx
(tx=15)

nx
(=5)

Upper Triangular Region

Lower
Triangular

Region

cy

cx

Sy

Sx

4

8

12

16

24

4 8 12 24 28

Fig. 12. Intermediate routing solution for general-state internal terminals in
R0.

x

y Sx2

Sx1

Sx3

Central
v-axis

O

..

..

..

..

..

..

..

..

.

..

.
..
.

Tx
.

R0

R1

Error!

x

y Sx2

Sx1

Sx3

Central
v-axis

O

..

..

..

..

..

..

..

..

.

..

.
..
.

Tx
.

R0

R1

Error!

(a)

x

y Sx2

Sx1

Sx3

Central
v-axis

O

..

..

..

..

..

..

..

..

.

..

.
..
.

Tx
.

R0

R1

Successful

Mask

x

y Sx2

Sx1

Sx3

Central
v-axis

O

..

..

..

..

..

..

..

..

.

..

.
..
.

Tx
.

R0

R1

Successful

Mask

(b)

Fig. 13. Example of mask insertion: (a) without mask insertion, the computed
channel in R0 connects to Sx1 ∈ R1, which violates terminal assignment rule,
and (b) after masks insertion (denoted in red bars), the computed channel in
R0 connects to Sx2 ∈ R0, which observes terminal assignment rule.

partitioned automatically during the routing process, which
greatly enhances rule-based routing quality.

For certain general-state internal terminals near the corner
of routing region or near the central-state internal terminals,
the above routing method is not enough for completing the
routing process. In this case, Rule-2 is applied to for obtaining
routing solutions.

Algorithm 4 presents the rule-based routing method in
subregion R0. The input consists of subregion R0 along with
internal and external terminals to be routed. And the output
is routed channels for R0. In Line 1, we first obtain candidate
external terminals as defined in Definition 13 and explained
in Figure 12. Then coordinates of candidate external terminals
are stored in Tx(tx,0) and Ty(0, ty). At the current step, the
internal terminal to be routed is not determined yet. In Line
2, we obtain maximum column/row number nx/ny of unrouted
internal terminals in R0. In Line 3, we add masks (for marking
a partial column/row of routing grids as obstacles) to guide
routing process when N or M is an odd number. As shown
in Figure 13(a), according to terminal assignment rule (5)
in Section III-C, Sx1 ,Sx3 ∈ R1, and Sx2 ∈ R0. However, when
applying Rule-1 to route from an external terminal (tx,0) to
an internal terminal on central v-axis, the connected internal
terminal Sx1 will belong to R0, which results in contradiction
with terminal assignment rule. In Figure 13(b), masks (denoted
by red bars) are inserted before applying Rule-1, such that
connected internal terminal Sx2 will belong to R0, which

Input: Subregion R0 with general-state internal terminals
and external terminals to be routed.

Output: Routed channels in R0.
1 Obtain candidate external terminals (tx,0) and (0, ty);
2 Obtain maximum column/row number nx/ny of unrouted

internal terminals in R0.
3 Add masks to current state if N or M is odd;
4 while nx > 0∧ny > 0∧ tx > 0∧ ty > 0 do
5 f ← 0;
6 if tx/ty > α then
7 f ← 1
8 else if ty/tx > α then
9 f ←−1

10 if f 6= 1∧ny×d ≤ ty then
11 Rule-2(Row, ny, min{nx,ny}, δ=0);
12 Update ty,nx,ny;
13 Continue;

14 if f 6=−1∧nx×d ≤ tx then
15 Rule-2(Column, nx, min{nx,ny}, δ=0);
16 Update tx,nx,ny;
17 Continue;

18 Sx,cx←Rule-1((nx×d,M×d), (tx,0));
19 Sy,cy←Rule-1((N×d,ny×d), (0, ty));
20 if (f 6= 1∧ cy =∅)∨ (f 6=−1∧ cx =∅) then
21 return Routing Failure;

22 if f = 1∨ (f = 0∧ length(cx)≤ length(cy)) then
23 Store cx as routing solution;
24 if f = 0∧dist(Sy,(0, ty))≤ dist(Sy,(tx,0)) then
25 Store cy as routing solution;

26 else
27 Store cy as routing solution;
28 if f = 0∧dist(Sx,(tx,0))≤ dist(Sx,(0, ty)) then
29 Store cx as routing solution;

30 Update tx, ty,nx,ny;

31 if nx > 0∧ny > 0∧ (tx = 0∨ ty = 0) then
32 return Routing Failure;

33 Delete masks in current state if N or M is odd;
34 return Routed channels;

Algorithm 4: Rule-General in R0.

resolves the contradiction with terminal assignment rule. The
proposed terminal assignment rule is critical in determining
overall routing quality. Experiments show that a contradiction
with terminal assignment rule will result in significant routing
failures. Specifically, when N is odd, masks will be inserted
to ((N +1)/2)th column for those unrouted internal terminals
Si /∈ R0. when M is odd, masks will be inserted similarly.

In Line 4-30, the while-loop is entered to route internal
terminals in general state to available external terminals in
subregion R0 one by one. In Line 5-9, flag f is computed for
evaluating the aspect ratio of routing subregion. For different
aspect ratios, the routing methods are different. f = 1 denotes
tx is much larger than ty, in which case only lower triangular
region can be processed to reduce the difference between tx
and ty. f = −1 denotes ty is much larger than tx, in which

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 9

x

y

O 5

5

nx
(=2)

ny(=2)

tx
(=14)

ty(=13)

.

.

.

.

.

.

.

.

.

.

.

(a)

x

y

O Central v-axis

Central h-axis

(b)

Fig. 14. Applying Rule-2 for general-state internal terminals: (a) as nx×d ≤
tx, tx is to the right of column of nx and the application condition of Rule-2
is satisfied; (b) routing solution for general-state internal terminals obtained
by Rule-2, which is marked in black channels (N = M = 13,d = d0 = 5).

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

x

y

O tx

ty .

.
Fig. 15. Routing by Rule-General in R0: as tx/ty > α, f = 1 and only lower
triangular region is processed (N = 18, M = 7, d = d0 = 3).

case only the upper triangular region is processed to reduce
the difference. f = 0 denotes that tx is similar to ty, and we
can process these two triangular regions simultaneously. In
Algorithm 4, α = 1.1.

In Line 10-17, the application conditions of Rule-2 are
checked. If tx ≥ nx×d or ty ≥ ny×d, Rule-2 will be applied
to obtain routing solution directly without obtaining candidate
routing channels. Figure 14(a) shows an example where tx ≥
nx × d. The dashed lines in the figure denote the channels
obtained by Rule-2. In Figure 14(b), the black lines denote all
routing channels obtained by Rule-2 for general-state internal
terminals.

Then in Line 18-19, Rule-1 is applied to obtain two
routing channels (cx, cy) in two triangular regions along with
corresponding internal terminals (Sx, Sy). The input to Rule-1
consists of pre-specified target internal terminals (nx×d,M×
d) and (N × d,ny × d). Please note that (nx × d,M× d) and
(N× d,ny× d) are used to provide routing guidance, i.e., to
obtain the main and auxiliary routing directions. Rule-1 will
return the first visited unoccupied internal terminal (Sx/Sy),
which is possibly different from the given internal terminal.
In Line 20-21, we check whether Rule-1 fails to obtain routing
channels. If so, the internal terminals in general state fail to
be routed and routing failure will be reported. More routing
space between internal terminals is required in this case. In
Line 22-29, different cases for the value of f is checked to
determine whether cx or cy will be picked. These different
cases are shown in Figure 12 and Figure 15. In Figure 12, tx
is similar to ty, and the length of channel cx is shorter than
cy, so we store cx as routing solution. Then we check whether
the length of cy from Sy to ty is shorter than that of Sy to tx
(denoted by gray dashed line). If so, it indicates that the current
channel (cy) is the optimal one, and will be stored as the
routing solution. In Figure 15, as tx/ty > α, the length-width
aspect ratio is too high. Therefore, the value of f is 1, and only

Input: Number of internal terminal in horizontal/vertical
direction N/M, and number of routing pitches d
between adjacent internal terminals.

Output: Routing solution
1 Calculate gx and gy by Equation (1);
2 Partition routing region into 4 subregions by terminal

assignment rule;
3 Call Algorithm 3 to route central-state internal terminals;
4 for i← 0 to 3 do
5 if i > 1 and |Ri|= |R3−i| then
6 Copy channels from R3−i to Ri by coordinate

transformation;
7 else
8 Call Algorithm 4 to obtain routed channels in Ri;
9 if Ri fails in routing then

10 return routing failure;

11 return Routing solution;
Algorithm 5: Complete routing method.

URBER

Terminal
Assignment

Rule

Rule-Central

Rule-2

Rule-1

Rule-General

Fig. 16. Function-call relationship between all rule-based methods.

lower triangular region is processed to reduce the ratio. Here,
length(c) returns the total length of channel c, and dist(A,B)
returns the Manhattan distance between routing grids A and B.
In Line 30, candidate external terminals Tx/Ty and column/row
number nx/ny with maximum unrouted internal terminals are
updated for next round.

In Line 31-32, we check the following condition: in one
triangular region, there are unrouted internal terminals, and
there are no unrouted external terminals. If so, routing failure
will be reported. In this case, more routing grids between
adjacent internal terminals are needed to successfully route all
internal terminals. Otherwise, routing is successful and we will
delete masks inserted in Line 3. Finally, all routed channels
are returned as output.

G. Overall Routing Algorithm

Algorithm 5 presents the complete routing method. First, N,
M, and d are obtained as input. Then gx and gy are computed
by Equation (1), and terminal assignment rule is applied to
divide the entire routing region into 4 subregions R0, R1, R2,
and R3. Next, Rule-Central is applied to central-state internal
terminals from all subregions, and Rule-General is applied to
obtain routing solutions for general-state internal terminals in
R0. If any routing failure occurs, the value of d needs to be
enlarged for successful routing. When routing solution for R0
is obtained, according to the symmetric property of routing

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 10

Input: Number of internal terminals in horizontal/vertical
direction N/M.

Output: Minimum number of routing pitches d0 between
adjacent internal terminals.

1 L← the lower bound of d0;
2 R← the upper bound of d0;
3 while L < R do
4 d← b(L+R)/2c;
5 Call URBER(N,M,d) in Algorithm 5;
6 if there is routing failure then
7 L← d +1;
8 else
9 R← d;

10 d0← L;
11 return d0;

Algorithm 6: Computation of d0.

subregions (see Lemma 3), if |R0|= |R3|, we will reuse routing
solution in R0 and perform the coordinate transformation (i.e.,
flip by central axis) to obtain routing solution for R3. The
same routing process is conducted on remaining unrouted
subregions. Finally, the routing solution of a given design is
obtained. Figure 16 illustrates the function-call relationship
between all rule-based methods.

H. Computation of d0

We determine the optimal value d0 of d by principle of
the bisection. It is easy to understand that if di is feasible for
successfully route all internal terminals, then ∀d ≥ di can be
used for 100% routing completion. As each internal terminal
corresponds to an external terminal, we have 2(gx + gy) ≥
N ×M, which is equivalent to d0 ≥

⌊
N×M

2(N+M+2)

⌋
. For upper

bound of d, we know that all internal terminals can be
successfully routed when d =

⌊ 1
2 (min{N,M}+1)

⌋
. So we

have d0 ≤
⌊ 1

2 (min{N,M}+1)
⌋
.

When lower and upper bounds of the optimal value d0 are
obtained, the principle of the bisection can be applied for
computing d0 for minimizing routing area. At each step of
the bisection, URBER(N,M,d) is applied to check whether d
is feasible for successfully routing the given design. If there
is routing failure, the value of d needs to be enlarged, and
the lower bound will be increased. Otherwise, d ≥ d0 and the
upper bound will be decreased. When the lower bound and
the upper bound is equal, we obtain the value of d as d0.

Algorithm 6 presents the details of how d0 is computed.
According to the special property of terminal assignment rule
in Section III-C, before coordinate transformation, we have
|R0| ≥ |R3| and |R1| ≥ |R2|. Therefore, when the value of d
can be used to successfully route R0 (R1), the same d can also
be used for R3 (R2). As a result, only subregion R0 and R1
are needed for computing d0 when calling rule-based routing
algorithm (URBER).

I. Approximation Formula of d0

To speed up the computation of d0 in Algorithm 6, we
propose an empirical formula for approximating the value of

d0 as
f (N,M) =

α×N×M
N +M−β

− γ (4)

where α= 0.586, β= 5.236 and γ= 2.256. We have conducted
experiments for all benchmarks with 3 ≤ N,M ≤ 600, from
which the error between d0 and f (N,M) is less than 2.7
routing grids (see Figure 19 for the accuracy on certain values
of N and M). Although parameters α, β, and γ are obtained
by fitting to 3 ≤ N,M ≤ 600, Equation (4) works well for
benchmarks of much larger scale (See Table III). From the
equation, we have d =O(NM

N+M), which is adopted in following
complexity analysis.

J. Complexity Analysis
Theorem 1: Given the numbers of internal terminals in

horizontal and vertical directions, N and M, respectively,
URBER runs in O(N3M3

(N+M)2) time.
Proof: Assuming length(c) denotes the length of channel

c, cc denotes a channel for a central-state internal terminal,
cg denotes a channel for a general-state internal terminal. It
takes O(1) time for applying terminal assignment rule on
each of the N ×M internal terminals. So it takes O(NM)
for the assignment of all internal terminals. For applying
Rule-Central, it takes O(∑ length(cc)) to calculate all chan-
nels connecting central-state internal terminals. For apply-
ing Rule-General, it takes O(∑ length(cg)) to calculate all
channels connecting general-state internal terminals. As a
result, computing all channels by rule-based routing takes
O(∑ length(cc) + ∑ length(cg)). On one hand, there are no
overlaps or crossings between channels. On the other hand,
for most benchmarks in the experiments, about 72% of total
routing grids in the routing region are occupied. Therefore, we
infer that O(∑ length(cc)+∑ length(cg)) be equivalent to the
total number of grids in routing region O(gxgy). Moreover, the
coordinate transformation performed on a routing subregion
also takes O(gxgy) time. According to Equation (1), O(gxgy) =
O(NMd2). And according to Equation (4), d = O(NM

N+M). So
we have O(gxgy) = O(N3M3

(N+M)2). Therefore, the overall runtime

complexity of the proposed routing algorithm is O(N3M3

(N+M)2).

Theorem 2: Let V denote the total number of internal
terminals (V = NM), and let k = max{N,M}/min{N,M} ≥ 1
denote the aspect ratio of given rectangular design. URBER
runs in O(V 2

k) time.
Proof: Without loss of generality, assume N ≥M. Then

we have N =
√

V k and M =
√

V/k. Therefore, the overall
complexity is equal to O(N3M3

(N+M)2) = O(V 2

k+2+1/k) = O(V 2

k).
For rectangular-shape designs (k > 1), we have 1/k < 1. In

contrast, for square-shaped designs, we have 1/k = 1. There-
fore, according to the runtime complexity O(V 2

k), URBER
runs faster for rectangular-shape designs than for square-
shaped designs. Experimental results in Table III verify above
analysis.

IV. EXPERIMENTAL RESULTS

We have implemented URBER in C++ programming lan-
guage. Our system is tested on an E5620 2.40GHz Intel

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 11

TABLE II
EXPERIMENTAL RESULTS ON SMALL-SCALE BENCHMARKS.

N×M d0 gx×gy
Total Length Error(%) CPU(s) Speedup of URBER

MCF MaxF Fr41 URBER MaxF Fr41 URBER MCF MaxF Fr41 URBER MCF MaxF Fr41

30×30 = 900 9 279×279 55112 55196 55188 55112 0.152 0.138 0 27.65 1.33 5.79 0.019 1.46E+03 7.00E+01 3.05E+02
45×45 = 2025 14 644×644 273183 273811 274583 273183 0.230 0.512 0 554.43 16.59 1704.61 0.025 2.22E+04 6.64E+02 6.82E+04
55×55 = 3025 17 952×952 602856 603975 603280 602856 0.186 0.070 0 2712.88 50.08 2202.80 0.032 8.48E+04 1.57E+03 6.88E+04
64×64 = 4096 19 1235×1235 1092600 1093556 1099416 1092600 0.086 0.624 0 6953.62 133.24 12777.88 0.037 1.88E+05 3.60E+03 3.45E+05
71×71 = 5041 22 1584×1584 1657902 1660468 1660358 1657902 0.155 0.148 0 18402.45 234.55 61134.90 0.053 3.47E+05 4.43E+03 1.15E+06

72×13 = 936 6 438×84 26498 26858 26502 26498 1.359 0.015 0 11.03 0.18 2.81 0.018 6.13E+02 1.00E+01 1.56E+02
77×26 = 2002 11 858×297 183686 184642 184776 183686 0.520 0.593 0 319.15 6.12 555.45 0.022 1.45E+04 2.78E+02 2.52E+04

111×27 = 2997 12 1344×336 326743 328523 326939 326743 0.545 0.060 0 932.46 12.67 15.55 0.026 3.59E+04 4.87E+02 5.98E+02
69×58 = 4002 19 1330×1121 1034338 1035776 1034972 1034338 0.139 0.061 0 6901.52 112.77 22223.01 0.035 1.97E+05 3.22E+03 6.35E+05
98×51 = 4998 20 1980×1040 1399334 1403899 1400562 1399338 0.326 0.088 0.0003 12352.41 152.00 45184.25 0.038 3.25E+05 4.00E+03 1.19E+06

Avg. - - - - - - 0.370 0.231 0 - - - - 1.22E+05 1.83E+03 3.48E+05

TABLE III
EXPERIMENTAL RESULTS ON LARGE-SCALE BENCHMARKS.

N×M d0 gx×gy | f (N,M)−d0| Total Length CPU(s) Memory(M)

316×316 = 99856 93 29481×29481 1.8945 629985640 7.50 348.8
447×447 = 199809 132 59136×59136 2.5134 2517494576 42.42 964.5
548×548 = 300304 161 88389×88389 1.9212 5679142936 65.10 1749
632×632 = 399424 186 117738×117738 2.3097 10042278616 114.49 2861
707×707 = 499849 208 147264×147264 2.3351 15720245427 256.54 4155

375×267 = 100125 92 34592×24656 2.1131 608817645 8.94 341.8
532×376 = 200032 129 68757×48633 1.4117 2420475700 24.73 946.5
858×350 = 300300 141 121119×49491 3.0535 4385731204 38.23 1532
904×442 = 399568 171 154755×75753 1.3809 8477760224 76.60 2572
949×527 = 500123 196 186200×103488 1.0092 14012963087 189.95 3868

Xeon Linux server with 16 cores and 40GB memory. Only
a single thread is used. The routing results are obtained with
the given value of d0, and the principle of the bisection is
not applied here. In the overall flow, approximation approach
for d0 (see Section III-I) can be used instead. Table II
shows routing results on small-scale cases, which already
cost much runtime for the network-flow-based method. In
Table II, (N,M) gives the number of internal terminals in
horizontal and vertical directions, respectively, “d0” gives
the minimum number of routing pitches between adjacent
internal terminals for successfully routing the given design,
“(gx,gy)” gives total number of routing grids in horizontal
and vertical directions, respectively, “Total Length” gives total
length of routed channels, “MCF” gives the optimal routing
results using min-cost flow-based formulation, “MaxF” gives
the sub-optimal routing results using maximum network-flow
formulation1, “Fr41” is a global routing method proposed in
[44], and “URBER” gives our rule-based routing results. We
have tried to use FastRoute 4.1 to run on single-layer routing.
However, the program always outputs “heap underflow” error.
Thus, we could only apply FastRoute 4.1 with two-layer
routing setup, i.e., the first layer is set for horizontal routing,
and the second layer is set for vertical routing, with routing
capacity set to be 1. Since the two-layer routing setup is
adopted in FastRoute 4.1, the routing problem is easier for
“Fr41”.

In the first 5 benchmarks, N = M, and in the last 5 bench-
marks, N 6= M (randomly synthesized). Different benchmarks

1Similar to [43], MCF is the network-flow formulation on fine routing
grids, which guarantees to route optimality. And MaxF is similar to MCF but
without the edge cost for minimized total length.

cover the scale from 1k to 5k. From column under “Total
Length”, URBER obtains near-optimal routing solution. In
fact, there are very few benchmarks for which our routing
method cannot obtain optimal routing solutions. The column
under “Error” gives the error in percentage. From results,
the maximum network-flow based method and the global
routing method obtains significantly degraded routing solu-
tions than URBER. From column under “CPU(s)”, which
gives the runtime of different methods, URBER is order of
magnitudes faster than network-flow based method and global
routing method. URBER successfully routes all small-scale
benchmarks within 0.1 seconds, which take up to 5 hours
for the min-cost flow-based method and 17 hours for the
global routing method. Moreover, most of the routing results
by our method are optimal. The column under “Speedup
of URBER” gives the speedup of URBER over existing
methods. The MCF/MaxF/Fr41 speedup is computed as (M-
CF’s/MaxF’s/Fr41’s CPU time)/(URBER’s CPU time). From
results, the network-flow-based method and global-routing-
based method do not scale well for the sizes of benchmarks. In
contrast, URBER scales well to large problem size. Therefore,
the larger the problem size, the more significant speedup
URBER obtains. Moreover, in all experiments, the maximum
memory consumption of URBER is less than 4.2GB, which
is considerably small for modern servers. We observe that
even with similar scale of total routing grids, as the value
of k = N/M is greater than 1 for rectangular routing region
(N 6=M) and equal to 1 for square region (N =M), our routing
method runs faster for rectangular routing regions according
to the complexity O(V 2

k) (see Section III-J). The runtime in
Table II confirms the above analysis.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 12

20 30 40 50 60 70 80 90 100 110

Internal terminals in horizontal direction N

20

30

40

50

60

70

80

90

100

110

In
te

rn
a
l
te

rm
in

a
ls

 i
n
 v

e
rt

ic
a
l
d
ir

e
ti

o
n
 M

M= 4
3
N,M= 3

4
N

Fig. 17. Routing solutions of URBER.

101 102 103 104 105 106

Benchmark size (N × M)
10 2

10 1

100

101

102

103

104

To
ta

l r
un

tim
e

(s
) MCF, O((NM)3.5)

MaxF, O((NM)3)

URBER, O((NM)2)

Fig. 18. Runtime of different methods in log scale (N=M).

Table III shows the routing results on large-scale bench-
marks, where the number of internal terminals ranges from
100k to 500k. For large-scale benchmarks, even using the max-
imum network-flow method, it is not possible to obtain feasible
routing solutions in acceptable runtime. In contrast, using our
routing method without any hierarchical or multilevel speedup
techniques, the routing solutions can be successfully obtained
within 5 minutes. All routing solutions have passed validity
check. From the table, the maximum memory consumption is
less than 4.2 GB. The column under “| f (N,M)− d0|” gives
absolute difference between actual value of d0 and estimated
value by approximation formula in Equation (4). Although the
fitted parameters in Equation (4) are obtained for benchmarks
with N,M ≤ 600, the maximum error for benchmarks with
N or M > 600 is only about 3 routing grids, which still
demonstrates high accuracy.

We have tested all benchmarks for 30≤N,M≤ 100 (totally
5,041 benchmarks for either N = M or N 6= M). When 30 ≤
N,M ≤ 100, routing error of URBER is less than 0.005%.
Figure 17 shows all routing solutions of these benchmarks,
where optimal routing solutions are denoted in light-blue
dots, and sub-optimal routing solutions are denoted in red
dots. The darker the red dot, the worse the routing solution.
Specifically, when M

N ∈ (3
4 ,

4
3), optimal routing solutions are

always obtained, which have been verified by the min-cost
flow-based method. Among all benchmarks, only about 408
(∼8.1%) cases are routed with the sub-optimal solution. The
maximum error in channel length for URBER is 20, which is
obtained when N = 92, M = 34, and d0 = 15. Considering the
large scale of this benchmark, i.e., total 734,296 routing grids,
the error of 20 routing grids is negligible.

Figure 18 shows the runtime of different methods on square-

0 100 200 300 400 500 600
Number of internal terminals in vertical direction (M)

0.0

0.5

1.0

1.5

2.0

2.5

|d
d 0

|

N=120
N=240
N=360
N=480

N=120
N=240
N=360
N=480

Fig. 19. Prediction errors of approximation formula (Equation (4)) over
actual values of d0.

shape benchmarks with N = M. For better readability, x- and
y-axis are drawn in log scale. From the figure, the min-
cost flow-based method runs very slow, and the runtime
increases dramatically when the problem size is large. The
maximum network-flow method runs a bit faster, but with
significantly degraded routing quality. In contrast, URBER
runs orders of magnitude faster with high-quality routing
solutions. Specifically, when N ×M is larger than 104, the
runtime of URBER fits well to O((NM)2) (10−9(NM)2) line
denoted in blue dots, which validates the runtime complexity
analysis that the proposed rule-based routing method runs in
O(N3M3

(N+M)2).
Figure 19 shows the prediction errors between approxima-

tion formula (f (N,M) in Equation (4)) and actual values of d0.
For different N and M values, the approximation equation of d0
well predicts the actual values. The maximum error for these
different cases (N = 120,240,360,480 and M ∈ [3,600]) is
2.64 routing grids, which proves the accuracy of the proposed
approximation formula. Please note that the approximation
formula can be used to significantly reduces computation
overhead in the principle of the bisection for determining the
actual value of d0.

Figure 20 shows the routing results for the benchmark with
N = 72 and M = 13 (6th benchmark in Table II) obtained
by three different methods. Figure 20(a), Figure 20(b), Fig-
ure 20(c), and Figure 20(d) give the routing results of the
min-cost flow-based method (MCF), the maximum network-
flow method (MaxF), the global routing method (Fr41) and
URBER, respectively. Figure 21 shows the routing results for
the benchmark with N = M = 30 (1st benchmark in Table II)
obtained by MCF and our method, respectively. From these
figures, URBER obtains much more regular routing solutions
than the network-flow-based and global routing methods.
We anticipate this as a critical property for certain biochip
applications, where we expect similar outputs at symmetric
terminals. An online demonstrative system of URBER can be
found at http://biocad.cs.tsinghua.edu.cn/urber.html.

V. CONCLUSION

We have proposed the first ultrafast rule-based escape
routing method, called URBER, for the drug sample delivery
biochip architecture for microwell array-based drug screening
applications. Experimental results have shown that URBER

http://biocad.cs.tsinghua.edu.cn/urber.html

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 13

(a) (b) (c) (d)

Fig. 20. Routing results of different methods for benchmark with N = 72
and M = 13: (a) MCF, (b) MaxF, (c) Fr41, and (d) URBER. Fr41 is drawn by
two colors due to two-layer routing setup, with many cross points between
different wires on two layers.

(a) (b)

(c)

Fig. 21. Routing results of different methods: (a) CostFlow for N = M = 30,
(b) Our routing method for N = M = 30, and (c) Our routing method for
N = M = 64.

successfully addresses the critical large-scale routing chal-
lenges, and scales very well in both runtime and memo-
ry for large-scale benchmarks, which cannot be solved by
existing min-cost flow-based method in acceptable runtime.
Specifically, URBER obtains high-quality routing solutions
for 100k microwell array only within minutes, confirming
the effective and efficient routing capacity of the proposed

rule-based routing method. Future work includes extending
URBER to process diagonal and missing-terminal escape
routing problems, as well as theoretical analysis of the solution
quality.

REFERENCES

[1] J. Gole, A. Gore, A. Richards, Y.-J. Chiu, H.-L. Fung, D. Bushman, H.-
I. Chiang, J. Chun, Y.-H. Lo, and K. Zhang, “Massively parallel polymerase
cloning and genome sequencing of single cells using nanoliter microwells,” Nature
Biotechnology, vol. 31, no. 12, p. 1126, 2013.

[2] R. E. Assal, U. A. Gurkan, P. Chen, F. Juillard, A. Tocchio, T. Chinnasamy, C.
Beauchemin, S. Unluisler, S. Canikyan, A. Holman, S. Srivatsa, K. M. Kaye, and
U. Demirci, “3-d microwell array system for culturing virus infected tumor cells,”
Scientific Reports, vol. 6, p. 39144, 2016.

[3] P. Zhang, J. Zhang, S. Bian, Z. Chen, Y. Hu, R. Hu, J. Li, Y. Cheng, X. Zhang, Y.
Zhou, X. Chen, and P. Liu, “High-throughput superhydrophobic microwell arrays
for investigating multifactorial stem cell niches,” Lab on a Chip, vol. 16, no. 16,
pp. 2996–3006, 2016.

[4] T.-Y. Tu, Z. Wang, J. Bai, W. Sun, W. K. Peng, R. Y.-J. Huang, J.-P. Thiery,
and R. D. Kamm, “Rapid prototyping of concave microwells for the formation
of 3d multicellular cancer aggregates for drug screening,” Advanced Healthcare
Materials, vol. 3, no. 4, pp. 609–616, 2014.

[5] W. H. Minhass, P. Pop, and J. Madsen, “System-level modeling and synthesis of
flow-based microfluidic biochips,” Proc. of CASES, 2011, pp. 225–234.

[6] W. H. Minhass, P. Pop, and J. Madsen, “Synthesis of biochemical applications on
flow-based microfluidic biochips using constraint programming,” Proc. of DTIP,
2012, pp. 37–41.

[7] W. H. Minhass, P. Pop, J. Madsen, and F. S. Blaga, “Architectural synthesis of
flow-based microfluidic large-scale integration biochips,” Proc. of CASES, 2012,
pp. 181–190.

[8] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-aware synthesis
for flow-based microfluidic biochips by dynamic-device mapping,” Proc. of DAC,
2015, p. 141.

[9] T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-aware syn-
thesis with dynamic device mapping and fluid routing for flow-based microfluidic
biochips,” IEEE Trans. on CAD, vol. 35, no. 12, pp. 1981–1994, 2016.

[10] J. McDaniel, B. Parker, and P. Brisk, “Simulated annealing-based placement for
microfluidic large scale integration (mlsi) chips,” Proc. of VLSI-SoC, 2014, pp.
1–6.

[11] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. T. Lee, and T.-Y. Ho, “An efficient bi-criteria
flow channel routing algorithm for flow-based microfluidic biochips,” Proc. of
DAC, 2014, pp. 1–6.

[12] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille, “Close-to-optimal
placement and routing for continuous-flow microfluidic biochips,” Proc. of ASP-
DAC, 2017, pp. 530–535.

[13] N. Amin, W. Thies, and S. Amarasinghe, “Computer-aided design for microfluidic
chips based on multilayer soft lithography,” Proc. of ICCD, 2009, pp. 2–9.

[14] W. H. Minhass, P. Pop, J. Madsen, and T.-Y. Ho, “Control synthesis for the flow-
based microfluidic large-scale integration biochips,” Proc. of ASP-DAC, 2013, pp.
205–212.

[15] K.-H. Tseng, S.-C. You, J.-Y. Liou, and T.-Y. Ho, “A top-down synthesis
methodology for flow-based microfluidic biochips considering valve-switching
minimization,” Proc. of ISPD, 2013, pp. 123–129.

[16] K. Hu, T.-A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer optimization for
flow-based mvlsi microfluidic biochips,” Proc. of CASES, 2014, pp. 1–10.

[17] H. Yao, T.-Y. Ho, and Y. Cai, “Pacor: practical control-layer routing flow with
length-matching constraint for flow-based microfluidic biochips,” Proc. of DAC,
2015, pp. 142:1–142:6.

[18] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer routing and
control-pin minimization for flow-based microfluidic biochips,” IEEE Trans. on
CAD, vol. 36, no. 1, pp. 55–68, 2017.

[19] Q. Wang, Y. Xu, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, and Y.
Cai, “Pressure-Aware Control Layer Optimization for Flow-Based Microfluidic
Biochips,” IEEE TBioCAS, vol. 11, no. 6, pp. 1488–1499, 2017.

[20] Q. Wang, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, and Y. Cai, “Hamming-
distance-based valve-switching optimization for control-layer multiplexing in flow-
based microfluidic biochips,” Proc. of ASP-DAC, 2017, pp. 524–529.

[21] H. Yao, Q. Wang, Y. Ru, Y. Cai, and T. Ho, “Integrated flow-control codesign
methodology for flow-based microfluidic biochips,” IEEE Design & Test, vol. 32,
no. 6, pp. 60–68, 2015.

[22] T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann, “Columba: co-layout
synthesis for continuous-flow microfluidic biochips,” Proc. of DAC, 2016, pp. 1–6.

[23] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai, “Physical Co-Design
of Flow and Control Layers for Flow-Based Microfluidic Biochips,” IEEE Trans.
on CAD, vol. 37, no. 6, pp. 1157–1170, 2018.

[24] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E. Araci, and U.
Schlichtmann, “Columba 2.0: A Co-Layout Synthesis Tool for Continuous-Flow
Microfluidic Biochips,” IEEE Trans. on CAD, vol. 37, no. 8, pp. 1588–1601, 2018.

[25] T.-M. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T.-Y. Ho, and
U. Schlichtmann, “Columba S: a scalable co-layout design automation tool for
microfluidic large-scale integration,” Proc. of DAC, 2018, pp. 163:1–163:6.

[26] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho, “Storage and caching:
Synthesis of flow-based microfluidic biochips,” IEEE Design & Test, vol. 32, no.
6, pp. 69–75, 2015.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883908, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2018. 14

[27] C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann, “Transport or store?:
Synthesizing flow-based microfluidic biochips using distributed channel storage,”
Proc. of DAC, 2017, pp. 1–6.

[28] I. E. Araci, P. Pop, and K. Chakrabarty, “Microfluidic very large-scale integration
for biochips: Technology, testing and fault-tolerant design,” Proc. of ETS, 2015,
pp. 1–8.

[29] P. Pop, I. E. Araci, and K. Chakrabarty. “Continuous-flow biochips: Technology,
physical-design methods, and testing,” IEEE Design & Test, vol. 32, no. 6, pp.
8–19, 2015.

[30] C. Liu, B. Li, B. B. Bhattacharya, K. Chakrabarty, T.-Y. Ho, and U. Schlichtmann,
“Testing microfluidic fully programmable valve arrays (fpvas),” Proc. of DATE,
2017, pp. 91–96.

[31] C. Liu, B. Li, T.-Y. Ho, K. Chakrabarty, and U. Schlichtmann, “Design-for-
testability for continuous-flow microfluidic biochips,” Proc. of DAC, 2018, pp.
164:1–164:6.

[32] J. Wang, P. Brisk, and W. H. Grover, “Random design of microfluidics,” Lab on
a Chip, vol. 16, pp. 4212–4219, 2016.

[33] W. Ji, T.-Y. Ho, and H. Yao, “More Effective Randomly-Designed Microfluidics,”
Proc. of ISVLSI, 2018, pp. 660–665.

[34] H. Kong, T. Yan, M. D. F. Wong, and M. M. Ozdal, “Optimal bus sequencing for
escape routing in dense pcbs,” Proc. of ICCAD, 2007, pp. 390–395.

[35] Y.-J. Lee, H.-M. Chen, and C.-Y. Chin, “On simultaneous escape routing of length
matching differential signalings,” Proc. of EDAPS, 2013, pp. 177–180.

[36] S.-I. Lei and W.-K. Mak, “Simultaneous constrained pin assignment and escape
routing considering differential pairs for fpga-pcb co-design,” IEEE Trans. on CAD,
vol. 32, no. 12, pp. 1866–1878, 2013.

[37] S.-I. Lei and W.-K. Mak, “Optimizing pin assignment and escape routing for
blind-via-based pcbs,” IEEE Trans. on CAD, vol. 35, no. 2, pp. 246–259, 2016.

[38] T. Yan and M. D. F. Wong, “Correctly modeling the diagonal capacity in escape
routing,” IEEE Trans. on CAD, vol. 31, no. 2, pp. 285–293, 2012.

[39] S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, “Generation
of gradients having complex shapes using microfluidic networks,” Analytical
Chemistry, vol. 73, no. 6, pp. 1240–1246, 2001.

[40] N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G.
M. Whitesides. “Generation of solution and surface gradients using microfluidic
systems,” Langmuir, vol. 16, no. 22, pp. 8311–8316, 2000.

[41] H. Xiang, X. Tang, and M. D. F. Wong, “Min-cost flow-based algorithm for
simultaneous pin assignment and routing,” IEEE Trans. on CAD, vol. 22, no.
7, pp. 870–878, 2003.

[42] J.-W. Fang, I.-J. Lin, Y.-W. Chang, and J.-H. Wang, “A network-flow-based rdl
routing algorithmz for flip-chip design,” IEEE Trans. on CAD, vol. 26, no. 8, pp.
1417–1429, 2007.

[43] Q. Wang, Z. Li, H. Cheong, O.-S. Kwon, H. Yao, T.-Y. Ho, K. Shin, B. Li,
U. Schlichtmann, and Y. Cai, “Control-fluidic codesign for paper-based digital
microfluidic biochips,” Proc. of ICCAD, 2016, pp. 1–8.

[44] Y. Xu, Y. Zhang, and C. Chu, “Fastroute 4.0: global router with efficient via
minimization,” Proc. of ASP-DAC, 2009, pp. 576–581.

Jiayi Weng is currently an undergraduate student
in the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China. He will
receive the B.S. degree in 2020.

Tsung-Yi Ho (SM’12) received his Ph.D. in Elec-
trical Engineering from National Taiwan University
in 2005. He is a Professor with the Department of
Computer Science of National Tsing Hua University,
Hsinchu, Taiwan. From 2007 to 2014 and 2015,
he was with National Cheng Kung University and
National Chiao Tung University, respectively. His
research interests include design automation and test
for microfluidic biochips and nanometer integrated
circuits. He has presented 10 tutorials and contribut-
ed 10 special sessions in ACM/IEEE conferences,

all in design automation for microfluidic biochips. He was a recipient of the
Best Paper Awards at the VLSI Test Symposium (VTS) in 2013 and IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems in
2015. He currently serves as an ACM Distinguished Speaker, a Distinguished
Lecturer of the IEEE CAS Society, the Chair of the IEEE Computer Society
Tainan Chapter, the Chair of the ACM SIGDA Taiwan Chapter, and Associate
Editor of the ACM Journal on Emerging Technologies in Computing Systems,
ACM Transactions on Design Automation of Electronic Systems, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on Very Large Scale Integration Systems, Guest Editor of
IEEE Design & Test of Computers.

Weiqing Ji is currently a Ph.D. candidate stu-
dent in the Department of Computer Science and
Technology, Tsinghua University, Beijing, China.
His research interests include design automation
methods of microfluidic biochips.

Peng Liu received both his B.Eng. degree in En-
vironmental Engineering and M.S. degree in Bio-
chemistry and Molecular Biology from Tsinghua
University. He then graduated from the University of
California, Berkeley with a Ph.D. in Bioengineering.
He completed his postdoctoral training at Sandia
National Laboratories, US. Peng Liu joined the
Department of Biomedical Engineering, Tsinghua
University School of Medicine, as a principal inves-
tigator and an associate professor in 2012. Currently,
Dr. Liu’s research interests include: 1) developing

fully integrated microfluidic systems for point-of-care diagnosis, forensic short
tandem repeat analysis, etc; 2) developing high-throughput cell microarray
platforms for cell manipulation, culture, and analysis.

Mengdi Bao received her B.S. degree in 2015 at
Southern Medical University, China and complet-
ed her M.S. degree in 2017 with Prof. Kazunori
Hoshino at the University of Connecticut. After that,
she joined Prof. Hailong Yao’s group at Tsinghua
University and worked on developing microdevices
and immunoassay as a research assistant. She is
now a R&D engineer in Berry Genomics Company
working on process optimization for identification
hydroxymethylcytosine modifications in cell-free D-
NA to diagnose cancer. Her research focuses on

CRISPR based nanosensors.

Hailong Yao (SM’15) received the B.S. degree in
computer science and technology from Tianjin Uni-
versity, Tianjin, China, in 2002, and the Ph.D. degree
in computer science and technology from Tsinghua
University, Beijing, China, in 2007. From 2007 to
2009, he was a postdoctoral research scholar in the
Department of Computer Science and Engineering,
University of California at San Diego, La Jolla. He
joined the Department of Computer Science and
Technology at Tsinghua University as an assistant
professor in September 2009. His research interests

include computer-aided design for microfluidic biochips and very large scale
integration (VLSI) physical design. Dr. Yao received two Best Paper Award
Nominations at ICCAD in 2006 and 2008, respectively. He received the
ISQED Best Paper Award Nomination in 2011 and received the SASIMI
Best Paper Award in 2016.

